Bayesian semiparametric additive quantile regression

نویسندگان

  • Elisabeth Waldmann
  • Thomas Kneib
  • Yu Ryan Yu
  • Stefan Lang
  • Yu Ryan Yue
چکیده

Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields posterior modes equivalent to frequentist estimates. In this paper, we utilize a location-scale mixture of normals representation of the asymmetric Laplace distribution to transfer different flexible modelling concepts from Gaussian mean regression to Bayesian semiparametric quantile regression. In particular, we will consider high-dimensional geoadditive models comprising LASSO regularization priors and mixed models with potentially non-normal random effects distribution modeled via a Dirichlet process mixture. These extensions are illustrated using two large-scale applications on net rents in Munich and longitudinal measurements on obesity among children. The impact of the likelihood misspecification that underlies the Bayesian formulation of quantile regression is studied in terms of simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference for structured additive quantile regression models

Most quantile regression problems in practice require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference via Markov chai...

متن کامل

Editorial for the special issue on quantile regression and semiparametric methods

Quantile regression and other semiparametric models have been widely recognized as important data analysis tools in statistics and econometrics. Thesemethods donot rely strictly onparametric likelihoodbut avoid the curse of dimensionality associated with many nonparametric models. The journal Computational Statistics and Data Analysis regularly publishes papers on these semiparametric methods, ...

متن کامل

Joint Quantile Regression through Bayesian Semiparametrics

We introduce a Bayesian semiparametric methodology for joint quantile regression with linearity and piecewise linearity constraints. We develop a probability model for all quantile curves in a continuum that define a coherent sampling distribution of the response variable. We provide a detailed illustration of model fitting and inference by analyzing wind speed trends of tropical cyclones in th...

متن کامل

Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression

Ordinary linear and generalized linear regression models relate the mean of a response variable to a linear combination of covariate effects and, as a consequence, focus on average properties of the response. Analyzing childhood malnutrition in developing or transition countries based on such a regression model implies that the estimated effects describe the average nutritional status. However,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012